Branch-and-Bound Algorithm for Reverse Top-k Queries

Akrivi Vlachou1,2, Christos Doulkeridis1,3, Kjetil Nørvåg1, Yannis Kotidis4

1Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2Institute for the Management of Information Systems, R.C. “Athena”, Greece
3University of Piraeus, Piraeus, Greece
4Athens University of Economics and Business (AUEB), Greece
Outline

- Motivation
- Background
- Branch-and-Bound Reverse Top-k Algorithm
 - Score Bounding Properties
 - INTOPk: Pruning and Result Inclusion
 - Branch-and-Bound Algorithm
- Experimental Evaluation
- Summary
Rank-aware Query Processing

- Huge amount of available data
- Users prefer to retrieve a limited set of k ranked data objects that best match their preferences (top-k queries)
Reversing the Top-\(k\) Query

- From the perspective of manufacturers:
 - estimate the **impact** of a product compared to their competitors products
 - **advertise** a product to potential customers

- **Reverse top-\(k\) query:**
 Given a potential **product** \(q\) and a positive integer \(k\), which are the **user preferences** for which \(q\) is in the top-\(k\) query result set?
Outline

- Motivation
- **Background**
- Branch-and-Bound Reverse Top-k Algorithm
 - Score Bounding Properties
 - INTOPk: Pruning and Result Inclusion
 - Branch-and-Bound Algorithm
- Experimental Evaluation
- Summary
A database containing information about different cars
Different users have different preferences
Top-k Query

- Given a scoring function $f()$, retrieve the k objects that best match the user preferences.
- Linear scoring function
 $$f_w(p) = \sum w[i] * p[i]$$
 weight $w[i]$: relative importance of attribute i
- Definition $\text{TOP}_k(w)$: Given a weighting vector w and a positive integer k, find the k data points p with the minimum $f(p)$ scores.
Top-\(k\) Query Example

- Bob prefers a cheap car, and does not care much about the age
 - the best choice (top-1) for **Bob** is the car \(p_1\) with score 2.5
- Tom prefers a newer car rather than a cheap car
 - the best choice for **Tom** and **Max** is the car \(p_2\)
- \(p_2\) is preferred by more users than \(p_1\)
Reverse Top-k Query

- Given a point \(q \), a positive number \(k \) and two datasets \(S \) and \(W \), a weighting vector \(w_i \) belongs to the result set \((bRTOP_k(q)) \), if and only if there exists \(p \) in \(\text{TOP}_k(w_i) \) such that \(f_{wi}(q) \leq f_{wi}(p) \).
- Given a product \(q \) and a positive integer \(k \), which are the weighting vectors \(w_i \) for which \(q \) is in the top-\(k \) query result set?
Reverse Top-k Query Example

- Query point $q=p_2$, $k=1$:
 - reverse top-k set is ${(0.2,0.8), (0.5,0.5)}$
 - advertise product to Tom and Max

- Query point $q=p_3$, $k=1$:
 - empty result set

- Naïve approach:
 - for each weighting vector process the top-k query
 - test if query point q belongs to the top-k set

<table>
<thead>
<tr>
<th>user</th>
<th>w[price]</th>
<th>w[age]</th>
<th>top-1(score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>0.9</td>
<td>0.1</td>
<td>$p_1 (2.5)$</td>
</tr>
<tr>
<td>Tom</td>
<td>0.2</td>
<td>0.8</td>
<td>$p_2 (2.2)$</td>
</tr>
<tr>
<td>Max</td>
<td>0.5</td>
<td>0.5</td>
<td>$p_3 (3.0)$</td>
</tr>
</tbody>
</table>
Goal:
- reduce the number of top-k evaluations by discarding weighting vectors

Threshold-based Algorithm (RTA):
- sort the weighting vectors based on pairwise similarity
 - top-k queries defined by similar vectors, have similar result sets
- evaluate the first top-k query, calculate a threshold
- for each weighting vector
 - possibly prune based on threshold
 - refine threshold
RTA vs BBR

- **Threshold-based Algorithm (RTA)**
 - accesses all stored weighting vectors
 - processes at least as many top-k evaluations as the cardinality of the result set

- **Branch-and-Bound Reverse Top-k Algorithm**
 - a set of weighting vectors can be immediately added to the result set
 - a set of weighting vectors can be excluded from the reverse top-k results
Outline

- Motivation
- Background
- Branch-and-Bound Reverse Top-k Algorithm
 - **Score Bounding Properties**
 - INTOPk: Pruning and Result Inclusion
 - Branch-and-Bound Algorithm
- Experimental Evaluation
- Summary
Score Bounds

- Score-lower-bound of p
 \[\ell_V(p) = \sum m_{V1} \ell[i] * p[i] \]
- Score-upper-bound of p
 \[u_V(p) = \sum m_{V1} u[i] * p[i] \]
- Score-lower-bound of e_i
 \[\ell_V(e_i) = \sum m_{V1} \ell[i] * e_i \cdot \ell[i] \]
- Score-upper-bound of e_i
 \[u_V(e_i) = \sum m_{V1} u[i] * e_i \cdot u[i] \]
Score Precedence

- no point $p \in m$ can affect the rank of q for any weighting vector $w \in V$
- all points $p \in m$ have a better rank than q for any weighting vector $w \in V$
- q may have a better or worse score than some $p_i \in m$ for $w \in V$
Outline

- Motivation
- Background
- Branch-and-Bound Reverse Top-k Algorithm
 - Score Bounding Properties
 - \textbf{INTOPk: Pruning and Result Inclusion}
 - Branch-and-Bound Algorithm
- Experimental Evaluation
- Summary
Pruning Property

- Pruning property: Given an MBR m_V, if k data items (MBRs or data points) precede q based on V then m_V can be safely pruned
 - no weighting vector $w \in V$ belongs to the reverse top-k result of q
• Result inclusion: Given an MBR m_V, if fewer than k data points p_i exist such that $u_V(q) > \ell_V(p_i)$, then all weighting vectors $w \in V$ can be safely added to the reverse top-k result of q.
INTOPk Algorithm

- For a given MBR m_V
 - traverses the R-tree of data set S
 - decides if m_V belongs to the result set or not
Outline

- Motivation
- Background
- Branch-and-Bound Reverse Top-k Algorithm
 - Score Bounding Properties
 - INTOPk: Pruning and Result Inclusion
 - Branch-and-Bound Algorithm
- Experimental Evaluation
- Summary
INTOPk is inconclusive for the root
INTOPk discards e_1
Optimizations of BBR

- **Basic BBR:**
 - for each processed m_V, an INTOPk query is posed
 - INTOPk queries (I/Os) should be avoided

- **BBR with Result sharing (BBR*):**
 - BBR discards an entry m_V based on k data items
 - these data items may also discard other (MBRs of) weighting vectors
 - BBR* maintains a set of data items in a list of bounded size k
• BBR with aggregate R-tree (BBRA):
 • aggregate R-tree: each entry is annotated with the number of all points contained in its subtree
 • BBRA counts the data points instead of data entries
Outline

- Motivation
- Background
- Branch-and-Bound Reverse Top-k Algorithm
 - Score Bounding Properties
 - INTOPk: Pruning and Result Inclusion
 - Branch-and-Bound Algorithm
- Experimental Evaluation
- Summary
Experimental Setup

- Comparison between Branch-and-Bound algorithms (BBR, BBR*, BBRA) and RTA
 - varying dimensionality (n:2-9), cardinality (|S|:100K-5M, |W|:100K-1M), value of k (10-50), data distribution (S:UN,CO,AC,CL, W:UN,CL) – real data (House: 127930 6d, Color: 68040 9d)

- Queries:
 - k-skyband
 - skyline points

- Metrics:
 - Time
 - I/Os
Comparison for Increased Dimensionality

Uniform distribution of S and Uniform weights W

$|S|=100K$, $|W|=100K$, $top-k=10$, skyband query points

- BBR* and BBRA improve RTA by a factor of 4-8

- White bar: I/Os on S
- Colored bar: I/Os on W
- BBR* and BBRA: 4 times better than RTA
• BBR* and BBRA need fewer INTOPk evaluations than BBR
• Discarded MBRs
 • many due to result sharing, without invoking INTOPk
• Added MBRs
 • All algorithms add groups of vectors to the result set
Scaling with Number of Weighting Vectors

Uniform distribution of S and Uniform weights W

$|S|=100K$, $n=4$, top-$k=10$, skyband query points

- The Branch-and-Bound algorithms scale nicely with increasing size of weights data set (*due to the efficient pruning*)
- RTA is more sensitive to increased values of $|W|$
Performance on Real Data

HOUSE consists of 127930 tuples, \(d=6\) (income spent on gas, electricity, water, heating, insurance, and property tax)
COLOR consists of 68040 9-dimensional tuples describing features of images in HSV color space
For varying different parameters, including:

- Higher dimensionality n (up to 9d)
- Other data distributions for S (AC, CO, CL)
- Other data distributions for W (CL)
- Increasing the cardinality of data objects $|S|$
- Increasing the value of k
Outline

• Motivation
• Background
• Branch-and-Bound Reverse Top-k Algorithm
 • Score Bounding Properties
 • INTOPk: Pruning and Result Inclusion
 • Branch-and-Bound Algorithm
• Experimental Evaluation
• Summary
Reverse top-k queries are important for market analysis
- identify customers who are potentially interested in a product based on the customer preferences and the competitors’ products.

State-of-the-art algorithm (RTA)
- accesses each individual preference
- cannot add a preference function to the result set without evaluating a top-k query

Our novel branch-and-bound algorithm (BBR)
- adds to the result set or discards sets of preferences instead of individual preferences

BBR* and BBRA outperform RTA and perform efficiently in all cases
Thank you!

More information: http://www.idi.ntnu.no/~vlachou/